
Supplementary Information for “A Joint
offloading and Energy Cooperation

Scheme for Edge Computing Networks”

Jieyi Zhang1, BilingZhang1∗, Jiahua Liu1, Zhu Han2

1. School of Network Education, Beijing University of Posts and
Telecommunications, P. R. China

2. Department of Electrical and Computer Engineering,
University of Houston, Houston, TX 77004, USA

1) Computation offloading strategy

Lemma 1.1 For any ok , τkmax and Le′j , when

{
τimax ≥ τ ′i
τjmax ≥ τ ′j

and

{
Le′i < 0
Le′j ≥ 0

, there is τimax ≥ τj ,

the offload strategy is 
oiji =min

{
Rej

K(Vj)
2−oj , (τimax−τj)·Vj , oi− Rei

K(Vi)
2

}
oli = oi − oiji
olj = oj

when τimax < τj , o
l
i = oi, o

l
j = oj .

Proof : In this case, both BSi and BSj have the ability to complete all calculation tasks inde-
pendently. According to Proposition 1, after consuming Rei, use BSj to calculate, and consume as
much Rej as possible, that is, to split the data to more Re side.

When τimax ≥ τj , BSj can accept the offloading of BSi. There are three uninstall strategies,

the minimum value of the three is oiji :
1© ECi helps j calculate until Rej is used up, from this, it can be follow as Rej −K(Vj)

2oj =

K(Vj)
2oij

′

i , simplifying to get oij
′

i =
Rej

K(Vj)2
− oj .

2© Regardless of Re, before the maximum delay limit of the oi calculation task is reached, the

amount of tasks that ECj can help ECi calculation can be written as oij
′′

i = (τimax − τj) · Vj .
3© If the Rei is consumed, all the remaining calculation tasks are completed at ECj . At this

time, the carrying capacity from ECi to ECj is oij
′′′

i = oi − Rei
K(Vi)2

.

When τimax < τj , ECj can’t help ECi perform the calculation, all calculation tasks are done
locally. �

Lemma 1.2 For any ok , τkmax and Le′j , when

{
τimax ≥ τ ′i
τjmax ≥ τ ′j

and

{
Le′i < 0
Le′j < 0

, we have

{
oi = oli
oj = olj

Proof : Both i and j lack of energy. At this point the calculation task is done locally and the
analysis is done in the same way as Lemma 1.1. �

1

Lemma 1.3 For any ok , τkmax and Le′j , when

{
τimax ≥ τ ′i
τjmax ≥ τ ′j

and

{
Le′i ≥ 0
Le′j ≥ 0

, we have

{
oi = oli
oj = olj

Proof : In this case, i and j can both complete the computational tasks independently under the
latency constraints, in order to reduce transmission loss, the computational tasks are prioritized to
be completed locally. So we have ok = olk �

Lemma 1.4 For any ok , τkmax and Le′j , when

{
τimax ≥ τ ′i
τjmax ≥ τ ′j

and

{
Le′i ≥ 0
Le′j < 0

, simply swap i

and j, and the method of analysis is the same as Lemma 1.3.
Proof : Replace i and j, the method of proof is the same as 1.3. �

Lemma 1.5 For any ok , τkmax and Le′j , when

{
τimax < τ ′i
τjmax < τ ′j

and

{
Le′i < 0
Le′j ≥ 0

.

(1) τimax ≥ τjmax. The set of equation can be written as
oli = τimax · Vi

oiji = min{(τimax − τjmax) · Vj , oi − oli}
oiCi = oi − (oli + oiji)

olj = τjmax · Vj
ojCj = oj − olj

ojij = 0

(2) τimax < τjmax. Simply swap i and j, and the method of analysis is the same as Lemma 1.5.
Proof : Neither i and j can complete the computational task under the experimental constraints,

but since the computational tasks of i, j have different time delays, the time delay difference can be
used for MEC offloading and then offloading to the cloud. Because i and j are unable to complete
the local task, Le′i does not affect the policy at this time.

When τimax ≥ τjmax,At this point, the time delay (maximum) of i is greater than that of j, j
completes part of the task of local oj before the maximum time delay arrives. Since the local
computation task without j after τjmax is finished, its computation resources are used to offload
computation task of i to j. The offloading amount is oi − oli when it represents i, j collaboration

can be completed. When unloading to C, the unloading amount can be given as oij
′′

i = (τimax −
τjmax) ∗ Vj . When τimax < τjmax, simply swap i and j, and the method of proof is the same as
Lemma 1.5. �

Lemma 1.6 For any ok , τkmax and Le′j , when

{
τimax < τ ′i
τjmax < τ ′j

and

{
Le′i < 0
Le′j < 0

, the result is the

same as 1.5.
Proof : At this case, the analysis is done in the same way as Lemma 1.5. �

Lemma 1.7 For any ok , τkmax and Le′j , when

{
τimax < τ ′i
τjmax < τ ′j

and

{
Le′i ≥ 0
Le′j ≥ 0

, the result is the

same as 1.5.
Proof : At this case, the analysis is done in the same way as Lemma 1.5. �

Lemma 1.8 For any ok , τkmax and Le′j , when

{
τimax < τ ′i
τjmax < τ ′j

and

{
Le′i ≥ 0
Le′j < 0

, the result is the

same as 1.5.
Proof : At this case, the analysis is done in the same way as Lemma 1.5. �

Lemma 1.9 For any ok , τkmax and Le′j , when

{
τimax < τ ′i
τjmax ≥ τ ′j

and

{
Le′i ≥ 0
Le′j ≥ 0

,

2

(1) τimax ≥ τ ′j . The set of equation can be written as
oli = τimax · Vi

oiji = min
{

(τimax − τj) · Vj , oi − oli
}

oiCi = oi −
(
oli + oiji

)
olj = oj

(2) When τimax < τ ′j , the set of equation can be given as
oli = τimax · Vi
oiCi = oi − oli

oiji = 0
olj = oj

Proof : In this case, i unable to complete all tasks of oi under time delay constraints. When
τimax ≥ τ ′j , after i offloads to j, if still remaining, then offloads to C cloud. When τimax < τ ′j , i
unable to offload to j, offloads to C cloud. �

Lemma 1.10 For any ok , τkmax and Le′j , when

{
τimax < τ ′i
τjmax ≥ τ ′j

and

{
Le′i < 0
Le′j < 0

, The result is the

same as 1.9 Proof : In this case, i unable to complete all tasks of oi under time delay constraints.
When τimax ≥ τ ′j , after i offloads to j, if still remaining, then offloads to C cloud. When τimax < τ ′j ,
i unable to offload to j, offloads to C cloud.The proof method is the same as 1.9. �

Lemma 1.11 For any ok , τkmax and Le′j , when

{
τimax < τ ′i
τjmax ≥ τ ′j

and

{
Le′i < 0
Le′j ≥ 0

, it follows that:

(1) τimax ≥ τ ′j . It can occur unload from i to j.
1) If oi ≥ (τimax − τj) · Vj + τimax · Vi., the set of equation can be formulated as

oli = τimax · Vi
oiji = (τimax − τj) · Vj
oiCi = oi −

(
oiji + oli

)
olj = oj

2) oi < (τimax − τj) · Vj + τimax · Vi, the set of equation can be written as

oiji = max(oi − τimax · Vi),min

{
Rej

K(Vj)2
− oj

(τimax − τj) · Vj , oi −
Rei

K(Vi)2

}
oli = oi − oiji
olj = oj

(2) When τimax < τ ′j , the set of equation can be given as
oli = τimax · Vi

oiji = 0
oiCi = oi − oli
olj = oj

3

Proof : In this case, i can neither possible to complete oi task nor lack Re.
When τimax ≥ τ ′j , it can occur unload from i to j. Under the above conditions, when oi ≥

(τimax − τj)·Vj+τimax·Vi, that is, before τimax arrives, the total task volume of i and j collaboration
is less than oi and cannot complete the computation task under the latency constraint, it needs to
be offloaded to the C cloud.

If oi < (τimax − τj) · Vj + τimax · Vi, task volume of i and j collaboration can reach oi. At this
point it is known that ECj has both excess computing power and excess energy. Therefore, it follows
from Theorem 1 that in Lemma of exhaustion of Rei, more energy of Rej is used. If Rej energy
is exhausted, the overdraft energy calculation is given priority in the original MECi in order to
reduce the transmission (information) energy consumption, and the overdraft energy replenishment
and adjustment will be expressed in the energy strategy, and the content representation is the same
as Lemma 1.1.

When τimax < τ ′j , it does occur unloaded between i and j. �

Lemma 12. For any ok , τkmax and Le′j , when

{
τimax < τ ′i
τjmax ≥ τ ′j

and

{
Le′i ≥ 0
Le′j < 0

, we can get the

conclusion:
(1) If τimax ≥ τ ′j , the set of the equation can be written as

oli = τimax · Vi
oiji = min

{
oi − oli, (τimax − τj) · Vj

}
oiCi = oi −

(
oli + oiji

)
olj = oj

(2) If τimax < τ ′j , the set of the equation can be written as

oli = τimax · Vi
oiji = 0

oiCi = oi − oli
ojij = min

{
Rei

K(Vi)
2 − o2i , (τjmax − τimax) · Vi

}
olj = oj − ojij

Proof : In this case, MECi unable to complete oi task, however ECj can complete, but energy
of j is not enough. If τimax ≥ τ ′j , priority is given to EC offloading between calculations and
offloading without considering Le′. If τimax < τ ′j , from Theorem 1, it follows that i unable to
perform computational offloading to j, but since i has more Rei, j unload to i (reverse unload). �

Lemma 1.13 For any ok , τkmax and Le′j , when

{
τimax ≥ τ ′i
τjmax < τ ′j

and

{
Le′i ≥ 0
Le′j ≥ 0

, replacing i and

j, the result is the same as 1.9.
Proof : Replacing i and j, the method of proof is the same as 1.9. �

Lemma 1.14 For any ok , τkmax and Le′j , when

{
τimax ≥ τ ′i
τjmax < τ ′j

and

{
Le′i < 0
Le′j < 0

, replacing i and

j, the result is the same as 1.10.
Proof : Replacing i and j, the method of proof is the same as 1.10. �

Lemma 1.15 For any ok , τkmax and Le′j , when

{
τimax ≥ τ ′i
τjmax < τ ′j

and

{
Le′i < 0
Le′j ≥ 0

, replacing i and

j, the result is the same as 1.11.

4

Proof : Replacing i and j, the method of proof is the same as 1.11. �

Lemma 1.16 For any ok , τkmax and Le′j , when

{
τimax ≥ τ ′i
τjmax < τ ′j

and

{
Le′i ≥ 0
Le′j < 0

, replacing i and

j, the result is the same as 1.12.
Proof : Replacing i and j, the method of proof is the same as 1.12. �
Summarizing the above we can obtain the optimal strategy for calculating the unloading. From

section II, we can obtain Ce(o(t)).
2). Energy collaboration strategy

Due to the many changes in energy unloading, in order to make the description clearer, some
iterative expressions cannot be omitted.
Lemma 2.1. According to the result of 1), if Lei ≥ 0, Lej ≥ 0, then Wk = 0 (k ∈ (i, j)),

mk = min

{
(Smax − sk) , Lek

δ

}
,

and when si = Smax, sj = Smax or si, sj < Smax or sj < Smax, si = Smax, there is

sk ← sk +mk,

and when si < Smax, sj = Smax, there is

si ← si + min
(

(Smax − si −mi) , θ
(
Lei −

mi

δ

))
.

Proof : In this case, in accordance with the principle of maximum storage, the remaining energy
is stored locally first, i.e., mk = Lek

δ , and if the local energy storage is full, i.e., Lek ≥ Smax − sk,
the excess energy will be transferred to the storage of another base station as xji = Lej −mj . The

storage capacity of j, i.e., m′j = min
{
θxij ,(Smax−sj)

δ

}
, according to the (13) we can get si. �

Lemma 2.2 According to the result of 1), if Lei ≥ 0, Lej < 0, we can get the result
(1) If Lei ≥ 0, Lej < 0 and θ ≥ δ2, BSi first transmits net energy to BSj to compensate for

the defect. Therefore, the equation can be set as

xij = min

{
Lei,

|Lej |
θ

}
,

Le′j = Lej + θxij .

Now, if Le′j = 0, mi = Le′i = Lei − xij then si ← si + δmi, sj ← sj , wi = wj = 0.
If Le′j < 0 and Le′′j = 0

nj = min

{∣∣Le′j∣∣
δ

, sj

}
,

Le′′j =Le′j + δnj ,

si ← si, sj ← sj − nj , wi = wj = 0.

If Le′j < 0 and Le′′j 6= 0,

ni = min

{∣∣Le′′j ∣∣
(δθ)

, si

}
,

xij ← xij + δni,

Le′′′j = Le′′j + δθni.

5

If
(
Le′′′j >= 0

)
, there is si ← si − ni, sj = 0, wi = wj = 0.

If
(
Le′′′j < 0

)
, si = sj = 0, wi = 0, wj =

∣∣Le′′′j ∣∣.
(2) Lei ≥ 0, Lej < 0 and θ < δ2. In this Lemma, the BSi tries to use excess energy to maximize

its own storage level to minimize the energy required to compensate for the BSj . The best optimal
strategy identified in the following two sub-scenarios can be written as

1. |Lej | ≥ θLei + δsj The best strategy is the same as (1).
2. |Lej | < θLei + δsj The best strategy is given below

xij = max

{
|Lej | − δsj

θ
, Lei −

Smax − si
δ

, 0

}
,

mi = Lei − xij ,

nj = max

{
|Lej | − θxij

δ
, 0

}
,

mj = min

{
Smax − sj

δ
, θxij − |Lej |

}
,

si ← si + δmi,

sj ← sj + δmj − nj , wi = wj = 0.

Proof :If Le′j < 0, we first make up the remaining deficit by storing on BSj . If Le′′j = 0, it means
that this situation has been completed. otherwise, we will compensate from the storage in BSi.If a
deficit is left

(
Le′′′j < 0

)
, we compensate and set up by traditional energy consumption.According

to [5], the above results can be easily proved. �
Lemma 2.3 Lei < 0, Lej < 0 and θ ≥ δ2. This Lemma is the symmetric Lemma of Lemma 2.2,

and is a role reversal of BSi and BSj . Therefore, we omit the description of the algorithm here.
Proof :Exchange i and j, the proof of this case is the same as 2.2. �
Lemma 2.4 Lei < 0, Lej < 0. In this Lemma, before helping another one, each BS first uses

a separate store to compensate. That is, for k ∈ {i, j}, the equation can be set as

nk = min

{
sk,
|Lek|
δ

}
,

Le′k = Lek + δnk,

sk ← sk − nk.

If it is Le′i > 0 or Le′j > 0, analyzed by the first three cases. If Le′i < 0, we compensate by
conventional energy and set as wi = |Le′k|.

Proof :In this case, the shortage of Rekt, k ∈ (i, j) is first replenished through storage, and then
lemma is redistributed. If the result of the replenishment is still less than 0, i.e., Le′i < 0, the power
shortage will be compensated from the grid. The similar proof method has been described in [5],
and we can easily prove the result. �

The amount of energy stored at the end of this time slot will be the initial value of energy stored
in the next time slot.

6

